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Derivation of a model for symmetrized electromagnetism 
from a space-time with torsion 

J Kruger, H De Meyert and G Vanden Berghe 
Seminarie voor Wiskundige Natuurkunde, Rijksuniversiteit-Gent, Krijgslaan 271-S9, 
B-9000 Gent, Belgium 

Received 5 February 1976, in final form 15 April 1976 

Abstract, The most general covariant spinor derivative compatible with the Minkowski line 
element leads in a unique way to an antisymmetric torsion tensor. It turns out that this can 
be expressed by meansof apseudovector potential, counterpart of the usual vector potential 
of electrodynamics. In this way some of the models for a symmetrized theory of the 
electromagnetic interaction with spin-f particles are rederived. 

1. Introduction 

In classical as well as in quantum mechanics the electromagnetic forces are introduced 
by means of the vector potential A, through the relation 

mu, = pa - eA,, (1.1) 
where U,, m and e represent respectively the velocity, the mass and the charge of the 
particle. pa and q,., satisfy the relation 

b a ,  q p l =  -sap, (1.2) 
where the bracket denotes the Poisson bracket in the classical case and stands for 
commutator multiplied by l / i A  in the quantum case. In both theories we have 

{moa, 1 = -eFap, (1.3) 
where Fa,., = AaSp denotes the electromagnetic field. Looking for a geometrical 
description of the electromagnetic forces, the essential point of the above equation is 
the non-commutativity of the velocity operators. This can be compared with the 
non-commutativity of the covariant derivatives which is responsible for the existence of 
the gravitational field in Riemannian space-time. We recall that a general metric space 
is described by a metric tensor gij and a linear connection rt. which are in the first 
instance independent. The geometrical content of space-time is then completely 
characterized by the metric tensor and by the tensors 

representing the torsion and 

R = a,r;$ - a,r;,+ Pj:,- c,.r;,, 
t Aspirant NFWO (Belgium). 
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representing the curvature. As the sources of the electromagnetic field are leptons and 
other elementary particles, a geometrical theory of the electromagnetic interaction 
should be written down first for particles with spin-;. In this article we restrict ourselves 
to this subject. The essential content of e uation (1.3) must appear on account of 
covariant differentiations operating on spin-3 spinors. 

In conventional theories of electromagnetism and gravitation the electromagnetic 
field is described as an external field in a Riemannian space-time. In order to remain as 
close as possible to the existing theories of electrodynamics and gravitation we reserve 
the dependence of the metric tensor entirely for the description of gravitation. 
Neglecting the gravitational interactions, the line element reduces to that of Minkowski 
space. Hence, we seek for the most general covariant differentiations (acting on 
spinors), compatible with the Minkowski line element. The torsionless case is reviewed 
by Bade and Jehle (1953). The general analysis admits an antisymmetrical torsion 
tensor. It turns out that this torsion tensor is related to an axial vector potential M, 
appearing in a symmetrical theory of the electromagnetic interaction, while the usual 
vector potential A, can still be interpreted as a gauge field. 

9 

2. Non-symmetrical connections compatible with Minkowski geometry 

A linear affine connection of the space-time can be most generally written as 

r;={ k . . ] + U ; ,  
11 

where {$ is Christoffel’s symbol of the second kind belonging to the metric gas, and the 
U: are functions of the coordinates which are so far unspecified and which may contain 
a symmetrical as well as an antisymmetrical part with respect to the lower indices. The 
expression for the covariant derivative of the metrical tensor gas with respect to the 
affine connection (2.1) is given by: 

where the comma denotes partial differentiation with respect to the space-time 
coordinates. In the case where the metrical tensor gas is equal to the Minkowski tensor 
qua, the equation (2.2) reduces to the expression 

D p % w  = -u,,w - U u p l r ,  (2.3) 
where the following notation has been introduced: 

U,,, = WCCP77QY. (2.4) 
For reasons of simplicity the following metric has been chosen: 

vas =diag(l, -1, -1, -1). 

By the gauge conservation condition 

Dprlpw = 0, (2.5) 

= -U,,,,. (2.6) 

and by taking into account equation (2.3) we find the following restriction on UpVIP: 
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The covariant derivative of a spinor 9 is defined as 

Bp$ = G,, -rp$ = (2, -rp)+, 

@, = J,, + Jr, = J(Zp + r,), 
while 

where rp is the so called spinor connection. All rules concerning ordinary derivatives 
remain valid for covariant derivatives, if the covariant differentiation operators occur- 
ring everywhere are adjusted to the nature of the quantity on which they act. Taking 
this into account and putting further the covariant derivatives of the Dirac ya and ya 
spinor operators equal to zero, one can write (Tonnelat 1965): 

(2.9) 

(2.10) 

Using a representation in which the Dirac matrices are constant, we have: 

Y,., = Y*,P = 0. (2.11) 

Equations (2.9), (2.10) and (2.11) yield the definition for the spinor connection r,. The 
compatibility requirement for equations (2.9)-(2.11) arises in a supplementary condi- 
tion for UcLUlp 

UCrvlp = - 4 . I P .  (2.12) 

The equations (2.6) and (2.12) imply that UpUlp has to be a tensor antisymmetrical in all 
its indices. This allows one to write: 

(2.13) 

with LA an arbitrary pseudovector and E , . , ~  the complete real antisymmetrical tensor. 
As another consequence of (2.12) it is found that: 

Gu= qu=qu. (2.14) 

So it is clear that qu is completely defined by the torsion of the space. Furthermore, it 
is easily verified that the spinor connection calculated from equation (2.9)-or equival- 
ently from equation (2.10)-turns out to be: 

(2.15) 

where C, is an arbitrary four-vector and I is the identity operator in spinor space. 
Finally we note that the Riemannian curvature tensor expressed in terms of the 
pseudovector LA becomes: 

(2.16) 

A 
u,ulp = EwupAL 7 

V 

rp = CpI+$iucruUpu~p = C ~ I + $ Y ~ U ~ ~ L ’ ,  

U A  A V  A P V  
9 R b = e f l  AL , ~ - E p ; A ~ ~ . u + ( ~ p u  p E A r  q-epr p E A u  ? I L  

which is clearly different from zero. Contraction gives 

R,, = R&= - 2qr7L2 + 2L,L, (2.17) 

and finally 

R = -6L2. (2.18) 
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3. The Lagrangian density for spin-: particles 

J Kruger, H De Meyer and G Vanden Berghe 

For the special relativistic free Lagrangian density of a massive free spin-i particle, the 
usual expression reads: 

2o = +i&ypZ,+ - m&+, 

A S,B = A (2,B) - ( A  ;,)B. 

(3.1) 

(3.2) 

where the symbol Z, stands for: 

Instead of taking the partial derivatives in equation (3. l) ,  we substitute the covariant 
ones of equations (2.7) and (2.8) in the sense of minimal coupling to the torsion. This 
results in: 

2=ii&y@DP+-m&+ = ~ ~ ~ - i & y ~ r , # ,  (3.3) 
where the last term can be considered as an interaction Lagrangian density. By taking 
into account equation (2.15) and setting: 

C, = -ieA,, 

L A  = $qMA, 
(3.4) 

(3.5) 
where e and q are real constants so far undetermined, the Lagrangian density LYint can 
be written down in terms of the vectors A, and M,: 

zint = -&y@(eA, +$qy5chMA)#, 

z i n t  = -~A,&Y@* + ~ M ~ J ; Y ~ Y ~ + *  

or 

(3.6) 
In order to have a Hermitian Lagrangian density, it is necessary that A,  and M, are real 
four-vectors. To see this, one immediately verifies that 

(-e@fA,+ + ~ & Y ~ Y ~ M , # ) '  = -e&yPA,*4 + ~ & Y ~ Y s M E + ,  

and comparison with (3.6) proves the statement. 
The field equation derived from 20+Tint reads 

i yPd,+ = m+, (3.7) 

i Y V , ,  -Y,L(eA, -qY5Mp)+ = m4. 

or 

Looking at any of the equivalent expressions (3.6) for the Lagrangian density 2int, it is 
striking that apart from the M, dependent term, the Lagran 'an density is formally the 
same as the one describing the motion of a quantized spin-? particle with mass m and 
charge e in a classical electromagnetic field with four-potential A,. 

A second four-vector namely M,, is coupled to an axial four-vector and is, in 
contrast to A,  related to the torsion of the space directly. Such a four-vector also 
appears in the symmetrized formulation of electromagnetism. In this widely discussed 
theory a so called m-electric four-potential is introduced (Cabibbo and Ferrari 1962, 
k i t e r  1970). 

P 

We introduce the notation 

f," =A,'," -A,,, h," = M,," - - M Y , , .  (3.8) 
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The electromagnetic tensor F,,, in the symmetrized formulation of electromagnetism is 
then defined by 

(3.9) 1 
Fpv = fPV + zq&,f3haB, 

whereas the dual electromagnetic tensor F,,, is found to be 
(3.10) 

The Maxwell equations can be written in the form 
avF,,, = J,, (3.11) - 
a”F,,, = J,, (3.12) 

where J, and j, are respectively an electromagnetic current and a pseudovector 
magnetic four-current. The basic equations (3.11) and (3.12) are the fundamental 
ingredients of a monopole theory if the electrical current J, and the magnetic current 
j,, which provides a monopole source for the electromagnetic field, are both conserved. 
As in that case the Lorentz gauge condition can be implied on A, and M,, the Maxwell 
equations (3.11) and (3.12) reduce to 

OA,=aV~, ,A,  =J,, (3.13) 

OM, = a”afi, = -j,. (3.14) 

These equations are the Euler-Lagrange equations corresponding to the variational 
principle with the Lagrangian density: 

(3.15) 

The last two terms in the right-hand side of (3.15) have their equivalent in the 
Lagrangian density (3.6). 

Identifying the current-dependent parts, it follows immediately that J, and & are 
given by 

J, = e&Y,k (3.16) 

(3.17) 

where the real constant q, so far arbitrary, becomes a constant with the dimension of a 
charge. 

From the equation (3.7) and its Hermitian conjugate we derive that 

J”,, = 0, (3.18) 

P ,  = -2imq&+. (3.19) 

Hence 3, is not conserved unless m or q equals zero. For m # 0,4 necessarily vanishes, 
and the particle (described by the field qbI) can only carry electric charge. For the 
description of magnetic charge (q # 0) we must introduce a second field for which the 
bare mass is zero. Following Schwinger (1966) and Hagen (1965) we suppose that this 
second field does not carry electric charge. The resulting Lagrangian density is now 

+$&I?’*~p’h +~M*611YpY5l/’II. (3.20) 

If one wishes to avoid the doubling of the usual number of degrees of freedom of the 
electromagnetic field, one can express Mw by means of the source terms in the free part 
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of the Lagrangian. The appropriate Lagrangian is then essentially the linear model of 
Boulware and Gilbert (1962). The invariance of the Lagrangian (3.20) under the local 
gauge transformation 

$1 + e+’%, tJI + tJI (3.21) 

A, + A ,  - e-’a,AI, (3.22) 

results in the charge conservation law (3.18). 
The Lagrangian is also invariant under the group of gauge transformations 

GI1 + e+iA11y5 *I19 tJII + (cIII e+iAlly5, (3.23) 

M, -mP +q-’aPAII. (3.24) 

Following Noether’s theorem, the latter invariance gives rise to the conservation law 

J,,, = 0. (3.25) 

The introduction of a mass term of the form m I I ~ I I + I I  in (3.20) would have destroyed 
the invariance of the Lagrangian on account of the transformation (3.23). 

The field equation for is the usual Dirac equation with conservation law 

a,((cIIp%) = 0, (3.26) 

where PL = ia, - eA,. The analogous law for the field 1(111 is 

a,((cIIIP$*II) = 0, (3.27) 

where P; is now given by 

(3.28) P, I1 = id, -iqy5uAMA. 

The q-dependent part of P: differs from r‘, (with e = 0) upon a factor of 3. 
The analogue to the mean equation of motion 

a, (&Y $1) = ~ ~ f ~ p ,  (3.29) 

is 

a,(&IIY”P;(”$II) = J”ha,, (3.30) 

with 

P:’ = id, + qySM,, (3.31) 

different from PF. The Lorentz forces on the right-hand sides of equations (3.29) and 
(3.30) are completely analogous to the expression for the Lorentz force derived in the 
case of the motion of a classical electrically and magnetically charged particle in a 
symmetrized electromagnetic field. 

4. Condusion 

In the literature several models for a symmetrized form of electromagnetism are 
proposed. Some of these models can be rederived by introducing a general covariant 
spinor derivative compatible with the Minkowski line element. Indeed, this require- 
ment leads in a unique way to an antisymmetric torsion tensor, which can be expressed 
by means of a pseudovector potential, counterpart of the usual vector potential in a 
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symmetrized version of electrodynamics. The conservation law for the magnetic 
current implies that the bare mass of a particle carrying magnetic current must vanish. A 
particle with non-vanishing bare mass can carry electric charge only. In this way the 
essence of the linear model of Boulware and Gilbert is rederived from geometrical 
considerations. 
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